A Modified Reverse One-Hybrid Screen Identifies Transcriptional Activation Domains in PHYTOCHROME-INTERACTING FACTOR 3

نویسندگان

  • Jutta C. Dalton
  • Ulrike Bätz
  • Jason Liu
  • Gemma L. Curie
  • Peter H. Quail
چکیده

Transcriptional activation domains (TADs) are difficult to predict and identify, since they are not conserved and have little consensus. Here, we describe a yeast-based screening method that is able to identify individual amino acid residues involved in transcriptional activation in a high throughput manner. A plant transcriptional activator, PIF3 (phytochrome interacting factor 3), was fused to the yeast GAL4-DNA-binding Domain (BD), driving expression of the URA3 (Orotidine 5'-phosphate decarboxylase) reporter, and used for negative selection on 5-fluroorotic acid (5FOA). Randomly mutagenized variants of PIF3 were then selected for a loss or reduction in transcriptional activation activity by survival on FOA. In the process, we developed a strategy to eliminate false positives from negative selection that can be used for both reverse-1- and 2-hybrid screens. With this method we were able to identify two distinct regions in PIF3 with transcriptional activation activity, both of which are functionally conserved in PIF1, PIF4, and PIF5. Both are collectively necessary for full PIF3 transcriptional activity, but neither is sufficient to induce transcription autonomously. We also found that the TAD appear to overlap physically with other PIF3 functions, such as phyB binding activity and consequent phosphorylation. Our protocol should provide a valuable tool for identifying, analyzing and characterizing novel TADs in eukaryotic transcription factors, and thus potentially contribute to the unraveling of the mechanism underlying transcriptional activation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PIF3, a Phytochrome-Interacting Factor Necessary for Normal Photoinduced Signal Transduction, Is a Novel Basic Helix-Loop-Helix Protein

The mechanism by which the phytochrome (phy) photoreceptor family transduces informational light signals to photoresponsive genes is unknown. Using a yeast two-hybrid screen, we have identified a phytochrome-interacting factor, PIF3, a basic helix-loop-helix protein containing a PAS domain. PIF3 binds to wild-type C-terminal domains of both phyA and phyB, but less strongly to signaling-defectiv...

متن کامل

poc1: An Arabidopsis mutant perturbed in phytochrome signaling because of a T DNA insertion in the promoter of PIF3, a gene encoding a phytochrome-interacting bHLH protein (photoreceptorysignal transduction)

The phytochrome family of informational photoreceptors has a central role in regulating lightresponsive gene expression, but the mechanism of intracellular signal transduction has remained elusive. In a genetic screen for T DNA-tagged Arabidopsis mutants affected in early signaling intermediates, we identified poc1 (photocurrent 1), which exhibits enhanced responsiveness to red light. This phen...

متن کامل

A yeast mating-selection scheme for detection of protein-protein interactions.

Recently, a new approach to the study of protein—protein interactions has appeared. The 'two-hybrid system' developed by Fields and coworkers (1,2) can be used either to look for new interacting proteins, or to verify and characterize interactions between proteins that are likely to associate according to genetic or biochemical data. The two-hybrid system is a molecular genetic approach that ta...

متن کامل

Residues Clustered in the Light-Sensing Knot of Phytochrome B are Necessary for Conformer-Specific Binding to Signaling Partner PIF3

The bHLH transcription factor, Phytochrome Interacting Factor 3 (PIF3), interacts specifically with the photoactivated, Pfr, form of Arabidopsis phytochrome B (phyB). This interaction induces PIF3 phosphorylation and degradation in vivo and modulates phyB-mediated seedling deetiolation in response to red light. To identify missense mutations in the phyB N-terminal domain that disrupt this inter...

متن کامل

Hox transcription factor ultrabithorax Ib physically and genetically interacts with disconnected interacting protein 1, a double-stranded RNA-binding protein.

The Hox protein family consists of homeodomain-containing transcription factors that are primary determinants of cell fate during animal development. Specific Hox function appears to rely on protein-protein interactions; however, the partners involved in these interactions and their function are largely unknown. Disconnected Interacting Protein 1 (DIP1) was isolated in a yeast two-hybrid screen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016